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CHAPTER 7. 
Advancing Broad-scale 
Forest Health Evaluation 
and Monitoring with rFIA
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Andrew O. Finley 

Grant M. Domke

INTRODUCTION

T
he U.S. Department of Agriculture Forest 
Inventory and Analysis (FIA) program 
collects data describing the condition and 

change of forest ecosystems across all lands in 
the United States (Smith 2002, USDA Forest 
Service 2019b). The extraordinary size of the 
spatial domain and breadth of forest variables 
sampled by the FIA program make it a unique 
and powerful resource for determining the 
extent and severity of undesirable changes in 
forest health across large spatial domains in the 
United States. Due to a lack of flexible, user-
friendly tools for estimation of forest variables 
(Tinkham and others 2018), the richness and 
utility of the FIA data are not always realized 
for forest health assessment. We developed rFIA 
(Stanke and others 2020, https://rfia.netlify.
app/), an open-source R package (R Core Team 
2020), to reduce these data accessibility hurdles 
and unlock the potential of FIA for broad-scale 
forest health evaluation and monitoring.

rFIA achieves two primary objectives: 
(1) improve the accessibility of FIA data for 
the estimation of status and change in forest 
ecosystems and (2) offer enhanced flexibility in 
estimation strategies and defining populations 
of interest. Using a simple yet powerful design, 
rFIA implements the design-based estimation 
procedures described in Bechtold and Patterson 
(2005) for more than 60 forest variables and 
allows users to return intermediate (i.e., plot, 
condition, and/or tree-level) estimates of all 

variables for use in modeling studies. With rFIA, 
users can easily summarize forest variables for 
populations defined by any combination of 
spatial units (i.e., spatial polygons), temporal 
domains (e.g., most recent measurements), 
and/or biophysical attributes (e.g., species, site 
classifications). Furthermore, rFIA implements 
five design-based estimators that enhance the 
value of FIA for temporal change detection and 
offer flexibility in a tradeoff between precision 
and temporal specificity.

Here we present three case studies chosen to 
demonstrate some aspects of rFIA’s potential to 
advance forest health evaluation and monitoring 
in the United States. First, we highlight rFIA’s 
spatiotemporal estimation capacity by estimating 
current down woody material (DWM) biomass 
within HUC6 watershed boundaries across 
the conterminous United States (CONUS) by 
combining the most recent FIA inventories 
available in each State. We next illustrate how 
rFIA enhances the value of FIA for temporal 
change detection by examining trends in 
lodgepole pine (Pinus contorta) mortality in 
Colorado using multiple design-based estimators. 
Finally, we use rFIA to estimate plot-level live 
tree density and develop a Bayesian hierarchical 
model to estimate changes in live tree abundance 
(i.e., net response of recruitment, growth, and 
mortality) within ecoregion subsections (Cleland 
and others 2007) across the CONUS (excluding 
Wyoming due to a lack of remeasurements), 
thereby demonstrating how rFIA can aid model-
based analyses.

https://rfia.netlify.app/
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METHODS
Data

Since 1999, FIA has operated an extensive, 
nationally consistent forest inventory designed 
to monitor changes in forests across all lands in 
the United States (Smith 2002). The program 
measures forest variables on a network of 
permanent ground plots that are systematically 
distributed at a rate of approximately one 
plot/2428 ha (one plot per 6,000 acres) across 
the United States (Smith 2002). Ground plots 
are remeasured approximately every 5 to 7 years 
in the Eastern United States and 10 years in the 
Western United States, with remeasurements 
currently available in most States. Data collected 
on ground plots are stored in a large public 
database (i.e., the FIA Database) (USDA Forest 
Service 2019a). rFIA includes utility functions 
to retrieve, process, and visualize data stored 
in the FIA Database (Stanke and others 2020). 
Herein, we demonstrate potential applications of 
rFIA to forest health evaluation and monitoring, 
drawing solely from data collected by the FIA 
program. The code to reproduce these analyses 
(including sample sizes and results) are available 
at our official website (https://rfia.netlify.app/
project/fhm2020/).

National-scale DWM Biomass Stocks

The FIA program measures variables related 
to DWM volume, biomass, and carbon on a 
subset of ground plots in most FIA regions 
(i.e., intensive or forest health plots). The dwm 
function in rFIA uses FIA data to produce plot-
level or population estimates of DWM variables 

by ecosystem components, including: coarse 
woody debris (i.e., 1,000-hour fuels), fine woody 
debris (i.e., 1-, 10-, and 100-hour fuels), slash 
piles, litter, and duff. We used the getFIA function 
in rFIA to download an appropriate subset of 
the FIA Database from the FIA DataMart and 
selected the most recent subset of inventories 
within each State using the clipFIA function. 
We then used the most recent subset of the FIA 
Database to estimate the current biomass density 
of 100-hour fuels (1.00–2.99-inch diameter) 
on forest land (including public and private 
lands) within HUC6 watershed boundaries 
across the CONUS. All estimates were produced 
using the temporally indifferent (TI) estimator 
(i.e., the same methods implemented by FIA’s 
flagship online estimation tool, EVALIDator 
[Miles 2019]).

Trends in Colorado Lodgepole  
Pine Mortality

The FIA program uses an annual panel system 
to estimate current inventories and change, 
where inventory cycles consist of multiple 
panels, and individual panels comprise mutually 
exclusive subsets of ground plots measured in 
the same year within a region. Precision of point 
and change estimates can often be improved by 
combining annual panels within an inventory 
cycle (i.e., by augmenting current data with 
data collected previously). While FIA does not 
prescribe a core procedure for combining panels 
(Bechtold and Patterson 2005), the TI estimator, 
which effectively pools data from annual panels 
into a single periodic inventory, is likely the most 
widely known and used.



145

rFIA implements the TI estimator by default 
for consistency with EVALIDator (Miles 2019). 
Alternatively, users may choose to return 
estimates from individual annual panels 
(ANNUAL estimator) or use one of three 
moving-average-based estimators, including the 
simple moving average (SMA), linear moving 
average (LMA), and exponential moving average 
(EMA). The SMA estimator applies equal 
weight to all annual panels within an inventory 
cycle; hence, its estimates tend to align closely 
with those of the TI estimator. In contrast, the 
LMA and EMA estimators apply weights that 
decay linearly or exponentially as a function 
of time since measurement, respectively. The 
EMA estimator requires specification of a 
decay parameter, λ (ranging between 0 and 
1, default 0.5), that controls the rate at which 
panel weights decline with time (higher values 
of λ indicate more even distribution of weights 
across panels).

The FIA program calculates growth, mortality, 
and removals between repeated measurements 
of inventory plots. To provide early estimates 
of mortality (i.e., prior to availability of 
remeasurements on annual inventory plots), 
FIA draws on inventory data collected prior to 
the implementation of the annual design (i.e., 
periodic inventory plots; where many annual 
plots were established on top of previous 
periodic plots). The growMort function in rFIA 
seamlessly integrates both procedures (periodic-
annual and annual-annual) to provide unbiased 
estimates of tree mortality processes over time.

We used the growMort function to estimate 
trends in the mortality rate (trees per acre per 
year) of lodgepole pine in Colorado over the 
period 2002–2018. We estimate mortality rates 
and associated uncertainty using each design-
based estimator currently offered in rFIA (i.e., 
TI, SMA, LMA, EMA, and ANNUAL estimators) 
and visually compare trends across estimators. 
To highlight the flexibility and utility of the EMA 
estimator for use in temporal change detection, 
we estimate mortality rates and associated 
uncertainty with multiple values of λ (i.e., 
effectively varying the temporal kernel from 
which mortality rates are estimated) and visually 
compare short-range and long-range trends.

National-scale Shifts in Live  
Tree Abundance

Traditionally, FIA has relied on sample plot 
data and design-based estimators to produce 
point and change estimates of forest variables 
(Tinkham and others 2018). These estimators 
are familiar and generally unbiased (McRoberts 
2010), though low sample sizes often limit their 
ability to yield sufficiently precise estimates for 
small populations (e.g., small spatial domains, 
rare species/events). Model-based estimators 
offer a versatile alternative to design-based 
estimation, relying on predictions from models 
and ancillary variables to produce estimates of 
forest variables and often yielding more precise 
estimates for small populations. To aid model-
based analyses using FIA data, rFIA allows 
users to return estimates of all forest variables 
within subpopulation response units (e.g., plot, 
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subplot, condition, tree-level). These estimates 
can then be used (along with ancillary variables) 
to develop models of ecological patterns and 
processes, estimate population parameters, and 
predict to unobserved domains (e.g., forecast 
future change).

Here, we use the tpa function in rFIA to 
estimate plot-level number of live trees per acre 
(TPA) and live tree basal area per acre (BAA) for 
all plot visits under the annual inventory design 
across the CONUS. Using estimates from plots 
visited more than once (i.e., remeasured annual 
plots), we construct a Bayesian hierarchical 
model to estimate the average rate of change 
in live TPA and BAA at individual plots, within 
ecoregion subsections (Cleland and others 
2007), and across the CONUS over the period 
1999– 2019:

	  

	
(1)

	  

	
(2)

	  

	
(3)

	  

	
(4)

	  

	
(5)

where 

y = the log of live TPA or BAA at visit i, on plot 
     j, in ecoregion subsection k

t = year of visit

α = a random intercept describing y at t = 0

β = a random slope describing the average  
    annual rate of change in y

 = the residual variance of the linear model 
     relating log TPA/BAA to time at the plot level  
     [equation (1)] 

We allow αj,k and βj,k to vary across plots, 
with their values drawn from subsection-level 
distributions [equations (2–3)] characterized by 
a corresponding mean (αk and βk) and variance 
(  , ) for each coefficient. Parameters of 
subsection-level distributions are in turn drawn 
from a CONUS-level distribution defined by 
means (α and β) and variances (  , ) of each 
coefficient. As our response (live TPA or live 
BAA) is log scaled, we can transform estimates of 
βk and β to annual rates:

	  

rk = 100(e  βk –1)	 (6)

	  

r = 100(e  β–1)	 (7)

where 

r = percentage of annual change in live TPA or 
     BAA (Crawley 1993)
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The hierarchical form of our model allows us 
to draw inference regarding temporal trends in 
live tree abundance across multiple ecological 
scales (i.e., stand, landscape, and subcontinental). 
For brevity, we highlight results at the landscape 
and subcontinental scale here. Specifically, we 
estimate the percentage of annual change in live 
TPA and live BAA of tree populations [equations 
(6 and 7)] within ecoregion subsections and 
across the CONUS. We estimate the probability 
of direction, or probability that the estimated rate 
for each population excludes 0, to highlight the 
“significance” of the estimated trends.

RESULTS AND DISCUSSION
National-scale DWM Biomass Stocks

We mapped estimates and associated 
uncertainty of current 100-hour fuel biomass 
density (tons per acre) by HUC6 units across 
the CONUS to demonstrate the spatiotemporal 
estimation capacity of rFIA (fig. 7.1). In the 
Eastern United States, 100-hour fuel density 
generally appears to be higher in regions 
dominated by oak-hickory forest types relative to 
regions dominated by southern pines, northern 
hardwoods, and spruce/fir forest. In the Western 
United States, 100-hour fuel density appears to 
be elevated in regions dominated by Douglas-
fir forest types (e.g., Pacific Northwest) relative 
to other regions. Uncertainty (measured as 
sampling error percentage, or coefficient of 
variation percentage) tended to be highest in 
the Plains and desert Southwest, presumably 
due to low sample sizes. Estimates presented 
herein are similar to those from previous efforts 

to characterize DWM biomass in U.S. forests 
(Chojnacky and others 2004, Woodall and 
others 2013).

Down woody material is an important 
component of forest ecosystems across the 
United States. Specifically, DWM biomass may 
help describe fuel loading, wildlife habitat, 
structural diversity, and biogeochemical processes 
in forests (Woodall and Monleon 2008). The 
national-scale DWM inventory provided by FIA 
is unprecedented in scope and spatial extent, 
and of extraordinary value in many forest health 
monitoring efforts. We anticipate the dwm 
function in rFIA will be of particular interest 
to wildlife biologists, ecologists, mycologists, 
foresters, and fuels specialists seeking to 
estimate the status, change, and future states 
of DWM stocks. For brevity, we only present 
results of 100-hour fuel density (biomass per 
acre). However, it is important to note that our 
analysis (i.e., a single call to dwm) simultaneously 
produced estimates of DWM biomass, carbon, 
and volume (totals and density) for the 
following ecosystem components/fuel classes: 
litter, duff, 1-hour (0.00–0.24-inch diameter), 
10-hour (0.25–0.99-inch diameter), 100-hour 
(1.00–2.99-inch diameter), and 1,000-hour fuels 
(≥3 inch diameter).

While the analysis presented here is relatively 
simple, it represents a substantial advance in 
spatial estimation capacity relative to other FIA 
estimation tools (USDA Forest Service 2019a). 
That is, we used unique areal units (i.e., HUC6 
watershed boundaries) to define populations of 
interest, rather than relying on fields recorded in 
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(A)

(B)

Figure 7.1—(A) Estimated current 100-hour fuel biomass (tons per acre) and 
(B) associated uncertainty (percent sampling error [SE]) within HUC6 watershed 
boundaries across the conterminous United States. All estimates produced using the 
dwm function in the rFIA package, using the temporally indifferent estimator. 
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the FIA Database. With rFIA, users can specify 
any spatial polygon object to use as a grouping 
variable (i.e., region contained within each 
areal unit is treated as a unique population). 
For example, spatial polygons describing historic 
fire regimes could be used to group estimates of 
current DWM fuel stocks (or other variables of 
interest, e.g., size-class distributions, mortality, 
invasive species abundance). While we use 
the dwm function to highlight rFIA’s spatial 
estimation capacity, all rFIA estimator functions 
have been designed with the same functionality.

Trends in Colorado Lodgepole Pine Mortality

We used multiple design-based estimators to 
examine temporal trends in Colorado lodgepole 
pine mortality (TPA per year) and highlight 
how rFIA enhances the value of FIA for 
temporal change detection. A general pattern of 
increasing mortality through time was evident 
across all estimators, likely linked to recent 
outbreaks of mountain pine beetle (Dendroctonus 
ponderosae) in the region (Page and Jenkins 
2007). Specifically, we observe an approximately 
fourfold increase in lodgepole pine mortality 
across all estimators in 2015 relative to 2005 
levels. Point-estimates of mortality (estimated 
mortality in any given year) and associated 
uncertainty (i.e., sampling error percentage) 
varied considerably among estimators, with 
the ANNUAL estimator exhibiting the highest 
degree of interannual variability and uncertainty 
and the SMA and TI estimators exhibiting 
the smoothest temporal trends and lowest 
uncertainty (fig. 7.2). In general, a decrease in 
uncertainty was evident across estimators over 
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Figure 7.2—(A) Estimated trends in lodgepole pine (Pinus contorta) mortality 
rates (trees per acre [TPA] per year) and (B) associated uncertainty (percent 
sampling error) in the State of Colorado over the period 2002–2018. Estimates 
were produced using five design-based estimators: annual (ANNUAL), 
exponential moving average (EMA), linear moving average (LMA), simple 
moving average (SMA), and temporally indifferent (TI). All estimates were 
produced using the growMort function in the rFIA package. 
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time, likely due to increasing sample size (i.e., 
availability of plot remeasurements). While the 
estimators presented herein vary considerably 
in their temporal specificity, it is important to 
note that plot remeasurements occur on 10-year 
intervals in the Western United States. Hence, 
all estimates of mortality should be interpreted 
as an average over a decade (ANNUAL) or more 
(SMA, LMA, EMA, TI). 

Point-estimates of mortality and associated 
uncertainty varied with the value of λ (i.e., decay 
parameter controlling distribution of weights 
across an inventory cycle) specified in the EMA 
estimator, illustrating the estimator’s pronounced 
flexibility and an inherent tradeoff between 
precision and temporal specificity (fig. 7.3). As 
λ approaches 0, higher weight is given to more 
recent panels in the inventory cycle, and the 
behavior of the EMA approaches that of the 
ANNUAL estimator (high temporal specificity; 
increased uncertainty). In contrast, as λ 
approaches 1, panel weights are distributed more 
evenly across inventory cycle, and the behavior 
of the EMA approaches that of the SMA (low 
temporal specificity; decreased uncertainty). 
Sample variance is generally minimized when 
panel weights are evenly distributed across the 
inventory cycle, though improved precision 
comes at the cost of introducing temporal lag-
bias (Bechtold and Patterson 2005). Hence, equal 
weighting schemes (e.g., SMA, TI, or EMA with 
a high λ) could be undesirable in settings where 
the variable of interest is suspected to change 
rapidly over time (as seen here).
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Figure 7.3—(A) Variation in short-range and long-range 
temporal trends of lodgepole pine (Pinus contorta) mortality 
rates (trees per acre [TPA] per year) and (B) associated 
uncertainty (percent sampling error) in the State of Colorado 
over the period 2002–2018. Estimates produced by varying 
the value of λ specified in the exponential moving average 
(EMA) estimator, where high values of λ characterize long-
range temporal trends and low values characterize short-range 
temporal trends. All estimates produced using the growMort 
function in the rFIA package. 
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In practice, the choice of estimator should 
be guided by user objectives. That is, no 
single estimator presented herein is “best” 
for all estimation objectives or across a wide 
variety of spatial, temporal, and population 
conditions. As a general guide, estimators 
that distribute weights approximately evenly 
across panels (i.e., SMA, TI, or EMA with a 
high λ) should be employed when users seek 
to minimize uncertainty around estimates and 
no considerable change is suspected in the 
underlying population. In contrast, if users are 
primarily interested in characterizing temporal 
change in the population of interest, estimators 
that give higher weight to more recent 
observations (i.e., ANNUAL, LMA, EMA with 
low λ) are likely to be more suitable. 

In rFIA, users can easily produce “moving-
average ribbons” as seen in fig. 7.3 where 
estimates are produced for multiple, sequential 
values of λ using the EMA estimator (i.e., 
effectively characterizing change across multiple 
temporal scales). Such plots are particularly 
useful for detecting periods of rapid change 
in a population. That is, rapid change is likely 
when large gaps appear between point-estimates 
produced with different values of λ, with 
increases in the state variable indicated when 
short-range (i.e., low λ) estimates exceed long-
range estimates (i.e., high λ) (fig. 7.3, 2008–
2012) and decreases indicated when long-range 
estimates exceed short-range estimates (fig. 7.3, 
2017–2018).

National-scale Shifts in Live Tree Abundance

To demonstrate how rFIA can aid model-
based analyses using FIA data, we use rFIA 
to estimate plot-level live tree TPA and 
BAA and develop a Bayesian hierarchical 
model to estimate temporal changes in each 
variable across multiple ecological scales. 
Across the entire CONUS (i.e., subcontinental 
scale, excluding Wyoming due to a lack of 
remeasurements), we found a decline in 
live TPA at a rate of 0.41 percent per year 
(probability of direction = 99.9 percent, i.e., 
very high confidence rate is different from 0). 
In contrast, we found live BAA to be expanding 
at a rate of 0.99 percent per year across the 
CONUS (probability of direction = 99.9 percent). 
Considerable variability was evident across 
ecoregion subsections (i.e., landscape scale; 
fig. 7.4); however, broad-scale patterns of 
decline in live TPA and expansion in live BAA 
emerge across much of the CONUS. Notable 
exceptions appear in northern Minnesota, 
where both variables are expanding, and in 
the southern Rocky Mountains, where both 
variables frequently indicate decline or zero net 
change in live tree abundance.

Shifts in live tree abundance emerge from the 
net demographic response of tree populations to 
endogenous (e.g., competition) and exogenous 
drivers (e.g., climate, disturbance). Hence, the 
patterns we observe in figure 7.4 represent the 
net result of spatially varying tree mortality, 
recruitment, and growth (BAA only) processes 
in U.S. forests over the period 1999–2019. 
General patterns of decline in live TPA and 
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Figure 7.4—Estimated annual rate of change (percent per year) in (A) live number of trees per acre (TPA) and (B) live basal area per 
acre (BAA), and (C, D) associated indices of significance (probability of direction) within ecoregion subsections (Cleland and others 2007) 
across the conterminous United States from 1999–2019. All estimates produced using a Bayesian hierarchical model fit to plot-level indices 
of live TPA and BAA on remeasured Forest Inventory and Analysis (FIA) plots. Plot-level indices of live tree abundance produced using 
the tpa function in the rFIA package.



153

expansion in live BAA likely emerge in part 
from transient dynamics associated with stand 
structural development and succession (Franklin 
and others 2002) (synchronous maturation 
of secondary forest across broad spatial 
domains); hence, it is difficult to determine if/
when shifts result primarily from exogenous 
stressors. Previous efforts have restricted their 
population of interest to old forest to account 
for such dynamics (Van Mantgem and others 
2009); however, these analyses are unlikely to 
properly characterize demographic responses at 
the landscape level, where tree populations are 
dispersed amongst a mosaic of stand structural 
classes and successional stages.

rFIA’s capacity to return estimates of forest 
variables within subpopulation response units 
(e.g., plot-level estimates, as used here) is 
unique relative to other public FIA estimation 
tools (i.e., others are designed primarily for 
design-based population estimation). This 
capacity eliminates the need for users to navigate 
the complex structure and data coding of the 
FIA Database to retrieve data for use in modeling 
or other applications (e.g., plot-level mapping). 
We anticipate this capacity will be particularly 
valuable in applications related to forest health 
evaluation and monitoring by allowing users 
to: (1) draw on auxiliary variables to augment 
sparse FIA data (e.g., Phase 2+ and Phase 3 plot 
networks) and improve estimation of forest 
health variables; and (2) draw on multiple 
remeasurements of FIA plots (when available) to 
improve estimation of demographic indices and 
change attributes (as shown here).

Future Extensions of rFIA

In short, we designed rFIA to reduce the 
hurdles of accessing and manipulating FIA data. 
Specifically, we aim to improve the accessibility 
of FIA data for the estimation of status and 
change in forest ecosystems, and to offer 
enhanced flexibility in estimation strategies and 
defining populations of interest. At present, rFIA 
is capable of estimating more forest variables 
(>60) from FIA data than any other publicly 
available tool. This suite of forest variables 
includes multiple important forest health 
indicators, including: tree mortality, tree growth, 
DWM, and tree diversity (i.e., species diversity, 
structural diversity). Current development 
aims to broaden the scope of rFIA to provide 
advanced estimation capacity for indicators of 
ozone damage, tree crown condition, soil quality, 
lichen diversity, and understory plant diversity.

Furthermore, we intend to expand the 
capacity of rFIA to include a suite of spatially 
enabled model-assisted estimators aimed at 
improving estimation within small domains 
(e.g., spatial/temporal extents, rare events). 
Model-assisted estimators will allow users 
to easily incorporate auxiliary data in the 
estimation of forest variables, offering substantial 
improvements in spatial prediction and 
change detection for sparsely sampled forest 
health variables.

Interested users can track updates to rFIA at 
our official website (https://rfia.netlify.app/). 
We encourage users to report any issues and/
or desired extensions on our active issues page 
(https://github.com/hunter-stanke/rFIA/issues).

https://rfia.netlify.app/
https://github.com/hunter-stanke/rFIA/issues
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